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Environmental microbial communities are complex 
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>90%	of	the	species	haven’t	been	seen	before	
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The Ideal Solution 

•  Easy	to	develop	
•  Robust	
•  Scale	to	big	data	
•  Efficient	



2009: Special Hardware 

Input/Output	(IO)	
Memory	

$1M	
Only	scale	up	to	~100Gb	

Jeremy	Brand	@JGI	
FPGA	@Convey	



2010: MP/MPI on supercomputers 

•  Experienced	soFware	engineers	
•  Six	months	of	development	Jme	
•  One	task	fails,	all	tasks	fail	

Problems:	 Fast,	scalable	

Rob	Egan	@JGI	

MPI version
412 Gb, 4.5B reads

2.7 hours on 128x24 cores
NESRC Supercomputer



2011: Hadoop/Map Reduce framework 

•  Google MapReduce 
–  Data Parallel programming model to process petabyte 

data 
–  Generally has a map and a reduce step 

•  Apache Hadoop 
–  Distributed file system (HDFS) and job handling for 

scalability and robustness 
–  Data locality to bring compute to data, avoiding 

network transfer bottleneck 
 



Programmability: Java vs Pig  
 

finding	out	top	5	websites	young	people	visit	



2013: BioPig 

BioPig-
Blaster 

BioPig-
Assembler 

BioPig-
Extender 

BioPig:	61	lines	of	code	
MPI-extender:	~12,000	lines	
																				(vs	31	in	BioPig)	

Robust	

Programmability	

Scalability	

x	
x	

Karan	Bha?a,	Henrik	Nordberg,	Kai	Wang	

BioPIG 



Challenges in application 

•  2-3 orders of magnitude slower than MPI 
•  IO optimization, e.g., reduce data copying  
•  Some problems do not easily fit into map/reduce 

framework, e.g., graph-based algorithms  
•  Runs on AWS, but cost $$$ if not optimized 



Optimizing BioPig 
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3X	Speed	up	

Lizhen	Shi,	Weikuan	Yu	@FSU	

SZll	very	low	efficiency!	



Addressing big data: Apache Spark 

•  New	scalable	programming	paradigm	
•  CompaZble	with	Hadoop-supported	storage	
systems		

•  Improves	efficiency	through:	
•  In-memory	compuZng	primiZves	
•  General	computaZon	graphs	

•  Improves	usability	through:	
•  Rich	APIs	in	Java,	Scala,	Python	
•  InteracZve	shell	



Goal: Metagenome read clustering 

•  Data characteristics: 
–  Total data size typically 100Gb – 1Tb  
–  >1 billion short pieces (reads, each 100-200bp) 
–  >1,000 different species, some species are more 

similar than others 
–  Sequence errors 1-2% 

•  Proposed approach: Divide-and-conquer 
– Cluster reads from each genome (Clustering) 
– Assemble each cluster in parallel (Assembly) 



•  Local information: overlap 

•  Global information: covariance 

Read clustering with Spark: idea 
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Read clustering with Spark: preprocess 

Data	Filtering	



Read clustering with Spark: core 

Local	Similarity	 Global	Similarity	

Read	Graph	



Toy test datasets 

•  Species: 
–  6 bacterial species 
–  Synthetic communities with random proportions of 

each 
 
 
•  Data: single genome sequence data (synthetic & real 

reads) 



Cluster evaluation criteria: NMI 

 
 

NMI: normalized mutual information 

Mutual	Informa-on:	How	pure	the	different	
clusters	are	

Entropy:	Penalizes	having	small	clusters	

hbp://nlp.stanford.edu/IR-book/html/htmlediZon/evaluaZon-of-clustering-1.html	



Testing Environments 

•  Local 
–  Algorithm development 
–  32-core 
–  256GB memory 

•  HPC-Lawrencium 
–  Small scale analysis 
–  CPU: INTEL XEON E5-2670  
–  16-core per node 
–  64GB memory per node 
–  Infiniband FDR 

•  NERSC-Cori 
–  Large scale analysis 
–  CPU: Cray Haswell  
–  32-core per node  
–  128GB memory per node 
–  Cray Aries high-speed interconnect with Dragonfly topology 



Local Similarity 

In	ideal	situaZon	(no	errors,	no	repeZZve	
sequences,	sufficient	sequence	coverage):	
	read	clustering	with	local	similarity	works	
perfectly.	

Reads	of	the	same	color	belong	to	the	same	genome	

With	real-world	situaZons	
where:	
	
Sequencing	coverage	is	low,	
many	small	clusters	may	form	
from	a	same	genome,	leads	to	
False	NegaZves	
	
Different	genome	share	
sequences,	they	
can	fall	into	the	same	cluster,	
leads	to	
False	PosiZves.		



Some performance metrics 

Needs	500-700X	of	memory	–	opZmizaZon	is	needed	

Xiandong	Meng	@JGI	



Global Similarity: input Parameters

No samples 1-1000

K-mer Length 20-50

K-Means Clusters 10-500

Eigen K-mers to sample 1-10,000

Eigen Reads to sample 100-60,000

Global Weight 0-150

Power Iteration Clusters 10-150

Power Iteration Steps 0-50



Exploring the parameter space 

Jordan	Hoffman	
	@Harvard	



Overall impression of Spark  

ü  Easy	to	develop	
?  Robust	
?  Scale	to	big	data	
?  Efficient	

§  VS	Hadoop/PIG	
§  VS	MPI	
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